Copied to
clipboard

G = C5×C8.C22order 160 = 25·5

Direct product of C5 and C8.C22

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C5×C8.C22, Q162C10, C20.64D4, SD162C10, M4(2)⋊2C10, C20.49C23, C40.13C22, C8.(C2×C10), (C2×Q8)⋊4C10, (C5×Q16)⋊6C2, C4.15(C5×D4), (Q8×C10)⋊11C2, (C5×SD16)⋊6C2, C4○D4.2C10, D4.3(C2×C10), (C2×C10).25D4, C2.16(D4×C10), C10.79(C2×D4), Q8.3(C2×C10), C22.6(C5×D4), (C5×M4(2))⋊6C2, C4.6(C22×C10), (C2×C20).70C22, (C5×D4).13C22, (C5×Q8).14C22, (C5×C4○D4).5C2, (C2×C4).11(C2×C10), SmallGroup(160,198)

Series: Derived Chief Lower central Upper central

C1C4 — C5×C8.C22
C1C2C4C20C5×D4C5×SD16 — C5×C8.C22
C1C2C4 — C5×C8.C22
C1C10C2×C20 — C5×C8.C22

Generators and relations for C5×C8.C22
 G = < a,b,c,d | a5=b8=c2=d2=1, ab=ba, ac=ca, ad=da, cbc=b3, dbd=b5, dcd=b4c >

Subgroups: 84 in 60 conjugacy classes, 40 normal (24 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, Q8, C10, C10, M4(2), SD16, Q16, C2×Q8, C4○D4, C20, C20, C2×C10, C2×C10, C8.C22, C40, C2×C20, C2×C20, C5×D4, C5×D4, C5×Q8, C5×Q8, C5×Q8, C5×M4(2), C5×SD16, C5×Q16, Q8×C10, C5×C4○D4, C5×C8.C22
Quotients: C1, C2, C22, C5, D4, C23, C10, C2×D4, C2×C10, C8.C22, C5×D4, C22×C10, D4×C10, C5×C8.C22

Smallest permutation representation of C5×C8.C22
On 80 points
Generators in S80
(1 22 69 49 26)(2 23 70 50 27)(3 24 71 51 28)(4 17 72 52 29)(5 18 65 53 30)(6 19 66 54 31)(7 20 67 55 32)(8 21 68 56 25)(9 78 58 35 48)(10 79 59 36 41)(11 80 60 37 42)(12 73 61 38 43)(13 74 62 39 44)(14 75 63 40 45)(15 76 64 33 46)(16 77 57 34 47)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)
(2 4)(3 7)(6 8)(9 15)(11 13)(12 16)(17 23)(19 21)(20 24)(25 31)(27 29)(28 32)(33 35)(34 38)(37 39)(42 44)(43 47)(46 48)(50 52)(51 55)(54 56)(57 61)(58 64)(60 62)(66 68)(67 71)(70 72)(73 77)(74 80)(76 78)
(1 38)(2 35)(3 40)(4 37)(5 34)(6 39)(7 36)(8 33)(9 70)(10 67)(11 72)(12 69)(13 66)(14 71)(15 68)(16 65)(17 42)(18 47)(19 44)(20 41)(21 46)(22 43)(23 48)(24 45)(25 64)(26 61)(27 58)(28 63)(29 60)(30 57)(31 62)(32 59)(49 73)(50 78)(51 75)(52 80)(53 77)(54 74)(55 79)(56 76)

G:=sub<Sym(80)| (1,22,69,49,26)(2,23,70,50,27)(3,24,71,51,28)(4,17,72,52,29)(5,18,65,53,30)(6,19,66,54,31)(7,20,67,55,32)(8,21,68,56,25)(9,78,58,35,48)(10,79,59,36,41)(11,80,60,37,42)(12,73,61,38,43)(13,74,62,39,44)(14,75,63,40,45)(15,76,64,33,46)(16,77,57,34,47), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (2,4)(3,7)(6,8)(9,15)(11,13)(12,16)(17,23)(19,21)(20,24)(25,31)(27,29)(28,32)(33,35)(34,38)(37,39)(42,44)(43,47)(46,48)(50,52)(51,55)(54,56)(57,61)(58,64)(60,62)(66,68)(67,71)(70,72)(73,77)(74,80)(76,78), (1,38)(2,35)(3,40)(4,37)(5,34)(6,39)(7,36)(8,33)(9,70)(10,67)(11,72)(12,69)(13,66)(14,71)(15,68)(16,65)(17,42)(18,47)(19,44)(20,41)(21,46)(22,43)(23,48)(24,45)(25,64)(26,61)(27,58)(28,63)(29,60)(30,57)(31,62)(32,59)(49,73)(50,78)(51,75)(52,80)(53,77)(54,74)(55,79)(56,76)>;

G:=Group( (1,22,69,49,26)(2,23,70,50,27)(3,24,71,51,28)(4,17,72,52,29)(5,18,65,53,30)(6,19,66,54,31)(7,20,67,55,32)(8,21,68,56,25)(9,78,58,35,48)(10,79,59,36,41)(11,80,60,37,42)(12,73,61,38,43)(13,74,62,39,44)(14,75,63,40,45)(15,76,64,33,46)(16,77,57,34,47), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (2,4)(3,7)(6,8)(9,15)(11,13)(12,16)(17,23)(19,21)(20,24)(25,31)(27,29)(28,32)(33,35)(34,38)(37,39)(42,44)(43,47)(46,48)(50,52)(51,55)(54,56)(57,61)(58,64)(60,62)(66,68)(67,71)(70,72)(73,77)(74,80)(76,78), (1,38)(2,35)(3,40)(4,37)(5,34)(6,39)(7,36)(8,33)(9,70)(10,67)(11,72)(12,69)(13,66)(14,71)(15,68)(16,65)(17,42)(18,47)(19,44)(20,41)(21,46)(22,43)(23,48)(24,45)(25,64)(26,61)(27,58)(28,63)(29,60)(30,57)(31,62)(32,59)(49,73)(50,78)(51,75)(52,80)(53,77)(54,74)(55,79)(56,76) );

G=PermutationGroup([[(1,22,69,49,26),(2,23,70,50,27),(3,24,71,51,28),(4,17,72,52,29),(5,18,65,53,30),(6,19,66,54,31),(7,20,67,55,32),(8,21,68,56,25),(9,78,58,35,48),(10,79,59,36,41),(11,80,60,37,42),(12,73,61,38,43),(13,74,62,39,44),(14,75,63,40,45),(15,76,64,33,46),(16,77,57,34,47)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80)], [(2,4),(3,7),(6,8),(9,15),(11,13),(12,16),(17,23),(19,21),(20,24),(25,31),(27,29),(28,32),(33,35),(34,38),(37,39),(42,44),(43,47),(46,48),(50,52),(51,55),(54,56),(57,61),(58,64),(60,62),(66,68),(67,71),(70,72),(73,77),(74,80),(76,78)], [(1,38),(2,35),(3,40),(4,37),(5,34),(6,39),(7,36),(8,33),(9,70),(10,67),(11,72),(12,69),(13,66),(14,71),(15,68),(16,65),(17,42),(18,47),(19,44),(20,41),(21,46),(22,43),(23,48),(24,45),(25,64),(26,61),(27,58),(28,63),(29,60),(30,57),(31,62),(32,59),(49,73),(50,78),(51,75),(52,80),(53,77),(54,74),(55,79),(56,76)]])

C5×C8.C22 is a maximal subgroup of   D20.39D4  M4(2).15D10  M4(2).16D10  D20.40D4  D40⋊C22  C40.C23  D20.44D4

55 conjugacy classes

class 1 2A2B2C4A4B4C4D4E5A5B5C5D8A8B10A10B10C10D10E10F10G10H10I10J10K10L20A···20H20I···20T40A···40H
order12224444455558810101010101010101010101020···2020···2040···40
size1124224441111441111222244442···24···44···4

55 irreducible representations

dim111111111111222244
type++++++++-
imageC1C2C2C2C2C2C5C10C10C10C10C10D4D4C5×D4C5×D4C8.C22C5×C8.C22
kernelC5×C8.C22C5×M4(2)C5×SD16C5×Q16Q8×C10C5×C4○D4C8.C22M4(2)SD16Q16C2×Q8C4○D4C20C2×C10C4C22C5C1
# reps112211448844114414

Matrix representation of C5×C8.C22 in GL4(𝔽41) generated by

10000
01000
00100
00010
,
16251616
16162516
25252516
16252525
,
1000
04000
00400
0001
,
0010
0001
1000
0100
G:=sub<GL(4,GF(41))| [10,0,0,0,0,10,0,0,0,0,10,0,0,0,0,10],[16,16,25,16,25,16,25,25,16,25,25,25,16,16,16,25],[1,0,0,0,0,40,0,0,0,0,40,0,0,0,0,1],[0,0,1,0,0,0,0,1,1,0,0,0,0,1,0,0] >;

C5×C8.C22 in GAP, Magma, Sage, TeX

C_5\times C_8.C_2^2
% in TeX

G:=Group("C5xC8.C2^2");
// GroupNames label

G:=SmallGroup(160,198);
// by ID

G=gap.SmallGroup(160,198);
# by ID

G:=PCGroup([6,-2,-2,-2,-5,-2,-2,505,487,1514,3604,1810,88]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^8=c^2=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^3,d*b*d=b^5,d*c*d=b^4*c>;
// generators/relations

׿
×
𝔽